當(dāng)前位置:高考升學(xué)網(wǎng) > 高考問(wèn)答 > 正文
求導(dǎo)的線性:對(duì)函數(shù)的線性組合求導(dǎo),等于先對(duì)其中每個(gè)部分求導(dǎo)后再取線性組合;兩個(gè)函數(shù)的乘積的導(dǎo)函數(shù):一導(dǎo)乘二+一乘二導(dǎo);兩個(gè)函數(shù)的商的導(dǎo)函數(shù)也是一個(gè)分式:(子導(dǎo)乘母-子乘母導(dǎo))除以母平方;如果有復(fù)合函數(shù),則用鏈?zhǔn)椒▌t求導(dǎo)。
導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個(gè)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)描述了這個(gè)函數(shù)在這一點(diǎn)附近的變化率。如果函數(shù)的自變量和取值都是實(shí)數(shù)的話,函數(shù)在某一點(diǎn)的導(dǎo)數(shù)就是該函數(shù)所代表的曲線在這一點(diǎn)上的切線斜率。導(dǎo)數(shù)的本質(zhì)是通過(guò)極限的概念對(duì)函數(shù)進(jìn)行局部的線性逼近。例如在運(yùn)動(dòng)學(xué)中,物體的位移對(duì)于時(shí)間的導(dǎo)數(shù)就是物體的瞬時(shí)速度。
不是所有的函數(shù)都有導(dǎo)數(shù),一個(gè)函數(shù)也不一定在所有的點(diǎn)上都有導(dǎo)數(shù)。若某函數(shù)在某一點(diǎn)導(dǎo)數(shù)存在,則稱其在這一點(diǎn)可導(dǎo),否則稱為不可導(dǎo)。然而,可導(dǎo)的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。
導(dǎo)數(shù)(Derivative),也叫導(dǎo)函數(shù)值。又名微商,是微積分中的重要基礎(chǔ)概念。當(dāng)函數(shù)y=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個(gè)增量Δx時(shí),函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時(shí)的極限a如果存在,a即為在x0處的導(dǎo)數(shù),記作f'(x0)或df(x0)/dx。
dna水解后得到的產(chǎn)物是什么
時(shí)間:2023-09-16 21:0:39invention可數(shù)嗎
時(shí)間:2023-09-13 09:0:04地球大氣層從低到高依次是
時(shí)間:2023-09-18 07:0:54宇文新州之懿范句式
時(shí)間:2023-09-21 15:0:08