當(dāng)前位置:高考升學(xué)網(wǎng) > 高考問答 > 正文
∫cos2xdx=∫?[1+cos(2x)]dx=∫?dx+∫?cos(2x)dx=∫?dx+?∫cos(2x)d(2x)=?x+?sin(2x) +C。解題思路:先運(yùn)用二倍角公式進(jìn)行化簡。cos(2x)=2cos2x-1,則cos2x=?[1+cos(2x)]。
設(shè)F(x)是函數(shù)f(x)的一個(gè)原函數(shù),我們把函數(shù)f(x)的所有原函數(shù)F(x)+C(其中,C為任意常數(shù))叫做函數(shù)f(x)的不定積分,又叫做函數(shù)f(x)的反導(dǎo)數(shù),記作∫f(x)dx或者∫f(高等微積分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做積分號,f(x)叫做被積函數(shù),x叫做積分變量,f(x)dx叫做被積式,C叫做積分常數(shù)或積分常量,求已知函數(shù)的不定積分的過程叫做對這個(gè)函數(shù)進(jìn)行不定積分。
由定義可知:求函數(shù)f(x)的不定積分,就是要求出f(x)的所有的原函數(shù),由原函數(shù)的性質(zhì)可知,只要求出函數(shù)f(x)的一個(gè)原函數(shù),再加上任意的常數(shù)C就得到函數(shù)f(x)的不定積分。
dna水解后得到的產(chǎn)物是什么
時(shí)間:2023-09-16 21:0:39invention可數(shù)嗎
時(shí)間:2023-09-13 09:0:04地球大氣層從低到高依次是
時(shí)間:2023-09-18 07:0:54宇文新州之懿范句式
時(shí)間:2023-09-21 15:0:08