設y=x^x (定義域:x>0),兩邊取對數(shù)得lny=xlnx;然后兩邊對x取導數(shù),此時注意:lny是y的函數(shù),y是x的函數(shù),因此當左邊對x取導數(shù)時,要把y當作中間變量,采用復合函數(shù)的求導方法:y′/y=x(1/x)+lnx=1+lnx,∴y′=(1+lnx)y=(1+lnx)(x^x)。
導數(shù)也叫導函數(shù)值。又名微商,是微積分中的重要基礎概念。當函數(shù)y=f(x)的自變量x在一點x0上產生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數(shù),記作f'(x0)或df(x0)/dx。
導數(shù)是函數(shù)的局部性質。一個函數(shù)在某一點的導數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導數(shù)的本質是通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學中,物體的位移對于時間的導數(shù)就是物體的瞬時速度。
不是所有的函數(shù)都有導數(shù),一個函數(shù)也不一定在所有的點上都有導數(shù)。若某函數(shù)在某一點導數(shù)存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導。
對于可導的函數(shù)f(x),x?f'(x)也是一個函數(shù),稱作f(x)的導函數(shù)(簡稱導數(shù))。尋找已知的函數(shù)在某點的導數(shù)或其導函數(shù)的過程稱為求導。實質上,求導就是一個求極限的過程,導數(shù)的四則運算法則也來源于極限的四則運算法則。反之,已知導函數(shù)也可以反過來求原來的函數(shù),即不定積分。
dna水解后得到的產物是什么
時間:2023-09-16 21:0:39invention可數(shù)嗎
時間:2023-09-13 09:0:04地球大氣層從低到高依次是
時間:2023-09-18 07:0:54宇文新州之懿范句式
時間:2023-09-21 15:0:08